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Abstract

The piezoelastic investigation for a circular inclusion embedded in a sandwich has been carried out. Each medium of
the composite is assumed to be transversely isotropic with hexagonal symmetry, which has an isotropic basal plane of
x1x2-plane and a poling direction of x3-axis. The electromechanical loadings considered in this paper include a point
force and a point charge located in the middle layer of the sandwich. An efficient procedure is established by combining
the analytical continuation method and alternating technique to derive the general forms of the piezoelastic fields in
terms of the corresponding problem. Numerical results are provided for a number of particular examples to study
the influence of material combinations, geometry, and loading condition on both the mechanical and electric response.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

There has been an explosion of interest in the field of piezoelectric materials in recent years. The electro-
mechanical response of piezoelectric materials is complex as it involves a mechanical response, an electrical
response, and a mutual coupling between the mechanical and electrical domains. Due to the intrinsic elec-
tro-mechanical coupling behavior, piezoelectric materials have been widely used in various fields, such as
actuators, transducers, sensors and more. In order to predict the performance and integrity of these devices,
it is important that the behavior of various defects such as cracks, dislocations and inclusions are analyzed
and studied under the electrical and mechanical fields.
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Numerous attempts have been made to analyze the inclusion problems in piezoelectric materials, see for
example the works of Pak (1992), Honein et al. (1995), Zhong and Meguid (1997), Weichen (1997), Meguid
and Deng (1998), Xiao and Bai (1999a,b), Liu et al. (2000), Wang and Shen (2001), Huang and Kuang
(2001), Jiang and Cheung (2001), among others. Based on the complex variable theory in conjunction with
the Möebius transformation, Chao and Chang (1999) studied the problem of multiple piezoelectric circular
inclusions embedded in an infinite matrix. By using the alternating technique and analytical continuation
method, Chen et al. (2004) solved a piezoelastic singularity problem of a trimaterial composed of three dis-
similar materials bonded along two parallel interfaces. However, for a piezoelectric media with more than
two straight or circular interfaces, mathematical difficulties are encountered. To our knowledge, the electro-
elastic behavior of a circular inclusion embedded in a plane layered media subjected to point electrome-
chanical singularities has not been studied yet.

In the present study, we focus on the derivation of the analytical model of a circular inclusion embedded
in the middle layer of the sandwich which is subjected to a point force and point charge. The proposed
method is based upon the technique of analytical continuation that is alternatively applied across each
interface in order to derive the complex potentials for each component of the composite in a series form
from the corresponding homogeneous solution.

This paper is divided into six sections. Following this brief introduction, a complex representation of
piezoelectricity is provided in Section 2, the solution of singularities problem of a bi-material is provided
in Section 3, and the alternating technique together with the results of Section 3 is employed to derive
the solution of the multiple-phase media in Section 4. Numerical results are presented graphically for some
particular cases in Section 5 and finally we conclude the current article in Section 6.
2. A complex representation of anti-plane piezoelectricity

Consider a piezoelectric system composed of a dissimilar circular inclusion embedded in the middle layer
of three-phase sandwich as depicted in Fig. 1. Each component is assumed to be transversely isotropic with
hexagonal symmetry and poled along the-x3 direction with an isotropic 0x1x2-plane. In a class of piezoelec-
tric materials capable of undergoing out-of-plane displacement u3 and in-plane electric potential /, the only
non-vanishing components of the stress field, the electric field and the electric displacement are given by
Fig. 1. A circular inclusion in a sandwich with a singularity in the middle layer.
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It is convenient to use a complex representation for u3 and / which are grouped as a vector.
Re½U� ¼
u3

/

� �
ð7Þ
where Re denotes the real part of a complex function and U is the generalized displacement with two com-
ponents being holomorphic functions. The components of the stress and electric displacement are related to
the generalized displacement by
r31 � ir32

D1 � iD2

� �
¼

c44 e15

e15 �e11

� �
U0 ¼ CU0 ð8Þ
where prime indicates differentiation with respect to the complex variable z = x1 + ix2.
In order to express the boundary condition in terms of U rather than its derivative U 0, we take an inte-

gration of the traction t and normal electric displacement Dn as
Z
t

Dn

� �
ds ¼ Im CU½ � ð9Þ
where ½ t Dn �T is referred to as the generalized traction and Im denotes the imaginary part of a complex
function.
3. A singularity in a bi-material

3.1. A bi-material composed of two half plane

The solution of a singularity in a bi-piezoelectric material bonded along x1-axis (see Fig. 2) is constructed
by the method of analytical continuation in terms of the homogeneous solution U0(z). Where Sa, the upper
half-space, and Sb, the lower half-space, are occupied by material a and b, respectively. If the singularity
located in lower half-space (z 2 Sb), in which the material constants of material b are implied in U0(z).
The continuities of Re[U] and Im[CU] across the interface are used to determine the bi-material solution.
By the analytical continuation method, one can obtain
UaðzÞ ¼ aabU0ðzÞ z 2 Sa

UbðzÞ ¼ U0ðzÞ þ babU0ðzÞ z 2 Sb

�
ð10Þ



Fig. 2. A singularity in a bi-material.
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where
Ca ¼
cðaÞ44 eðaÞ15

eðaÞ15 �eðaÞ11

" #
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cðbÞ44 eðbÞ15

eðbÞ15 �eðbÞ11

" #

aab ¼ 2ðCa þ CbÞ�1
Cb
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For a singularity located in the upper half-space, by the same procedure, the solution is found to be
UaðzÞ ¼ U0ðzÞ þ bbaU0ðzÞ z 2 Sa

UbðzÞ ¼ abaU0ðzÞ z 2 Sb

(
ð11Þ
3.2. A coordinate translation

Suppose that regions Sa :x2 P h and Sb :x2 6 h occupied by material a and b, respectively, are perfectly
bonded along the interface x2 = h. With a coordinate translation z* = z � ih, (see Fig. 2), it is easy to show
that the generalized displacement U(z) in the x1x2 coordinate system is related to the function U*(z*) in the
x�1x�2 coordinate system by Suo (1989)
U�ðz�Þ ¼ UðzÞ; U�ðz�Þ ¼ Uðz� 2ihÞ ð12Þ
3.3. A circular inclusion embedded in an infinite plane

Consider a circular inclusion embedded in an infinite plane which is subjected to a singularity as shown
in Fig. 3 where Sa, the inner region, and Sb, the outer region, are occupied by material a and material b,



Fig. 3. A circular inclusion embedded in an infinite plane.
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respectively. The continuities of Re[U] and Im[CU] across the interface are used to determine the bi-mate-
rial solution. By analytical continuation method, one can obtain
aabU0ðzÞ z 2 Sa

U0ðzÞ þ babU0ða
2

z Þ z 2 Sb

�
ð13Þ
4. A singularity in a multiple-phase media

The alternating technique together with the results of the previous sections can be employed to analyze a
singularity in a multiple-phase media (Fig. 1). Since it is difficult to satisfy the continuity conditions along
all interfaces at the same time, the method of analytical continuation should be applied to each interface
alternatively. Assume a series solution for the case of the singularity located in Sa as8
UaðzÞ ¼ U0ðzÞ þ
P1
n¼1

UanðzÞ

UbðzÞ ¼
P1
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where Uan(z), Ubn(z), Ucn(z) and Udn(z) are holomorphic functions in their respective region. Since the mid-
dle layer is bonded with each other medium, we first assume Uj1(z) (j = a,b,c,d) by putting all bi-material
solutions together in Ua1(z) as
Ua1ðzÞ ¼ bbaU0ðAbzÞ þ bcaU0ðAczÞ þ bdaU0ðAdzÞ
Ub1ðzÞ ¼ abaU0ðzÞ
Uc1ðzÞ ¼ acaU0ðzÞ
Ud1ðzÞ ¼ adaU0ðzÞ

8>>><
>>>:

ð15Þ
where Abz, Acz and Adz represent the transformation functions defined as
Abz ¼ zþ 2ih

Acz ¼ z� 2ih

Adz ¼ a2

z

Obviously, the above equations cannot satisfy the continuity conditions across all interfaces since Ua1(z)
contains two superfluous terms for each interface. For example, the first and second terms of Ua1(z) cannot
satisfy the continuity conditions at Ld, the second and third terms of Ua1(z) cannot satisfy the continuity
conditions at Lb, and the first and third terms of Ua1(z) cannot satisfy the continuity conditions at La.
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Fig. 8. Angular variations of the tangential shear stress along the circular hole in a sandwich.
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Fig. 9. Angular variations of the interfacial tangential electric field along the circular hole in a sandwich.

Fig. 10. Angular variations of the tangential shear stress along the circular hole in a film/substrate structure.
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To let the superfluous terms of Ua1(z) for each interface to satisfy the continuity conditions, additional
terms Ua2(z), Ub2(z), Uc2(z) and Ud2(z) holomorphic in Sa, Sb, Sc and Sd, respectively should be introduced
to satisfy the continuity conditions across all interfaces, the method of analytical continuation is applied to
all interfaces alternatively to obtain
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Ua2ðzÞ ¼ bbabcaU0ðAcAbzÞ þ bbabdaU0ðAdAbzÞ þ bcabbaðAbAczÞ
þbcabdaU0ðAdAczÞ þ bdabbaU0ðAbAdzÞ þ bdabcaU0ðAcAdzÞ

Ub2ðzÞ ¼ aba½bcaU0ðAczÞ þ bdaU0ðAdzÞ�
Uc2ðzÞ ¼ aca½bbaU0ðAbzÞ þ bdaU0ðAdzÞ�
Ud2ðzÞ ¼ ada½bbaU0ðAbzÞ þ bcaU0ðAczÞ�

8>>>>>><
>>>>>>:

ð16Þ
But it is clear that Ua2(z) still contains four superfluous terms to satisfy the continuity conditions at each
interface. The previous procedure should be repeated to get the results of which the continuity conditions
are satisfied at all interfaces as follow:
UanðzÞ ¼ bba½U
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for n ¼ 3; 4; 5 . . . ð17Þ
where
Ub
aðn�1ÞðzÞ ¼ bcaUaðn�2ÞðAczÞ þ bdaUaðn�2ÞðAdzÞ ð18Þ

Uc
aðn�1ÞðzÞ ¼ bbaUaðn�2ÞðAbzÞ þ bdaUaðn�2ÞðAdzÞ ð19Þ

Ud
aðn�1ÞðzÞ ¼ bbaUaðn�2ÞðAbzÞ þ bdaUcðn�2ÞðAczÞ ð20Þ
For the problem of a three-layer composite subjected to a singularity in the middle layer with thickness
being h (see Fig. 7), by letting material d be made of material a and with the same procedure, Eq. (14)
can be simplified to the following explicit form:
UaðzÞ ¼
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n
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which is in agreement with the result provided by Chen et al. (2004).
5. Results and discussion

In this section, we provide four particular examples to study the influence of material combinations, geo-
metric configuration, and loading conditions on both the mechanical and electric response. The composite
of these examples is made up of two commonly used piezoelectric ceramics PZT-5H and PZT-7A with
material constants c44 = 35.3 GNm�2, e11 = 15.1 nCV�1 m�1, e15 = 17 Cm�2 and c44 = 25.4 GNm�2,



Fig. 11. Angular variations of the interfacial tangential electric field along the circular hole in a film/substrate structure.

Fig. 12. Variations of tangential shear stress vs. the piezoelectric constant ratios for a film/substrate structure.
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e11 = 4.071 nCV�1 m�1, e15 = 9.2 Cm�2, respectively. Besides, the piezoelectric constants of the air are as-
sumed as c44 = 0, e11 = 8.85 nCV�1 m�1, e15 = 0 Cm�2 in the following discussion.



Fig. 14. Variations of tangential shear stress vs. the piezoelectric constant ratios for a circular inclusion in a strip.

Fig. 13. Variations of tangential electric field vs. the piezoelectric constant ratios for a film/substrate structure.
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As our first example, we consider a PZT-5H strip containing a circular hole subjected to a point force
and a point charge. Figs. 4 and 5, respectively show contours of constant normalized electric fields
E1a=q0e

a
11 and E2a=q0e

a
11 due to a point electromechanical loadings. From these figures one can observe



Fig. 15. Variations of tangential electric field vs. the piezoelectric constant ratios for a circular inclusion in a strip.
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the difference between contours of the electric fields as a result of the applied anti-plane mechanical and in-
plane electric loadings. Although severe concentrations are observed about the point of the singularity and
the boundary of the hole in both cases, the contour shape in these two plots is quite different. For example,
E1a=q0e

a
11 is symmetric about x1-axis as shown in Fig. 4, while E2a=q0e

a
11 is anti-symmetric about the x1-axis

as shown in Fig. 5. Figs. 6 and 7, respectively show contours of constant normalized shear stresses r31a/p0

and r32a/p0 due to point electromechanical loadings. Similarly, although severe concentrations are ob-
served about the point of the singularity and the boundary of the hole in both cases, the contour shape
in these two figures is quite different. For example, r31a/p0 is symmetric about the x1-axis as shown in
Fig. 6, while r32a/p0 is anti-symmetric about the x1-axis as shown in Fig. 7. For a second example, we con-
sider a circular hole in the middle layer of a sandwich. Figs. 8 and 9, respectively show the angular varia-
tions of the tangential shear stress and electric field along the circular hole. One can observe that both the
magnitude of the tangential shear stress and electric field increase with increasing h/a ratio. As a third
example, we consider a film/substrate structure with a hole in the film which is subjected to a point force
and a point charge. Figs. 10 and 11, respectively show the angular variations of the tangential shear stress
and electric field along the circular hole. We can observe that both the tangential shear stress and electric
field along the circular hole experience a big jump across the point h = 90� which is nearest to the applied
point singularity approach the circular hole, and both the maximum magnitude of tangential shear stress
and electric field increase with decreasing h/a ratio. Figs. 12 and 13 display the distribution of shear stress
and electric field at the point z = ai as a function of the piezoelectric constant ratios, respectively. One can
observe that both the maximum magnitude of the shear stress and electric field decrease with the elastic
modulus of the film. As our fourth example, we consider a circular inclusion embedded in a PZT-5H strip.
The material constants of the inclusion are assumed as the same of the strip except the piezoelectric con-
stant. Figs. 14 and 15 display the distribution of shear stress and electric field at the point z = ai as a func-
tion of the piezoelectric constant ratios, respectively. One can observe that both the maximum magnitude of
the electric field and shear stress decrease with the elastic modulus of the inclusion. This phenomenon is
helpful for us to build a more effective sensor and active actuator.



5554 F.M. Chen et al. / International Journal of Solids and Structures 43 (2006) 5541–5554
6. Conclusion

An efficient procedure for solving a circular inclusion embedded in a sandwich subjected to a point elec-
tro-elastic singularity is established. Compared to the three-phase multiplying region problem, more math-
ematical difficulties are encountered in this study. Since one of the medium is connected with each other
medium, a particular treatment of combining the analytical continuation method and alternating technique
is applied to derive the general series solutions for the piezoelectric fields in each medium explicitly. It was
shown that both the stress and electric fields are dependent on the mismatch of the material constants, the
geometric parameter of the system and electromechanical loading conditions. Moreover, this approach
could lead to some interesting simplifications in solution procedure and the derived analytical solution
can be employed as Green�s function to investigate the corresponding crack problems.
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